האוניברסיטה העברית בירושלים החוג למתימטיקה

בחינה בלוגיקה מתימטית (1) בחינה בלוגיקה מתימטית סמסטר הסתיו – תשנ"ה – מועד א'

המורה: פרופ' עזריאל לוי

ענה על 3 שאלות בלבד מתוך 4 השאלות הבאות

תשובותיך על השאלות צריכות לכלול הוכחות מלאות וברורות.

- 1. א. הגדר מהו הטווח של הופעה של אופרטור בביטוי נוצר.
- ב. יהי ϕ ביטוי נוצר באלגברת יצירה $\mathfrak E$ של ביטויים, יהי χ קטע של ϕ שגם הוא ביטוי נוצר, ויהי $\mathfrak F$ אופרטור המופיע ב- χ . הוכח כי הטווח של $\mathfrak F$ ב- $\mathfrak C$ נמצא כולו ב- χ .
 - cב. א. יהיו c ו-c' קשרים פסוקיים. הגדר מתי אנו אומרים שc' דואלי ל-2.
 - ϕ' ב. יהיו ϕ' פסוקים של תחשיב הפסוקים. הגדר מתי אנו אומרים ש ϕ' דואלי ל
 - . תן הוכחה מלאה לכך שאם פסוק ϕ הוא טאוטולוגיה אז כל פסוק ϕ' דואלי לו הוא סתירה.
 - 3. א. הוכח כי קבוצת הפסוקים האמיתיים לוגית בתחשיב היחסים מסדר שני אינה כריעה חיובית.
 - ב. מה אומרת לנו העובדה ב-א'!
 - (\mathfrak{D}_3) לפסוק אל עץ השקר במערכת במערכת ההיסק \mathfrak{p}

$$\forall x (\phi(x) \to \psi) \to (\exists x \phi(x) \to \psi)$$

 $.\psi$ - אינו מופיע ב-אינו אינו איכן

בהצלתה!

האוניברסיטה העברית בירושלים החוג למתימטיקה

בחינה בלוגיקה מתימטית (1) בחינה בלוגיקה מתימטית סמסטר הסתיו – תשנ"ה – מועד ב'

המורה: פרופ' עזריאל לוי

ענה על 3 שאלות בלבד מתוך 4 השאלות הבאות תשובותיך על השאלות צריכות לכלול הוכחות מלאות וברורות.

- 1. הוכח את המשפט הבא: לכל קבוצה W אנו מסמנים ב- \mathcal{F}_W את אלגברת הפעולות על M. תהי \mathcal{F}_G קבוצת כל קשרים פסוקיים ו- \mathcal{F}_Π קבוצת לוחות האמת שלהם. כל פונקציה הנוצרת מ- \mathcal{F}_Π כאשר \mathcal{F}_Π היא קבוצת כל הפסוקים, גם היא קשר פסוקי, ולוח האמת שלה נוצר מ- $\mathcal{F}_{\{\mathsf{T},\mathsf{F}\}}$.
- 2. יהי ${\cal D}$ עץ האמת של פסוק ϕ בתחשיב היחסים. נתון שבכל העלים של ${\cal D}$ נמצאות סדרות רעות, כלומר סדרות המכיליות פסוק ושלילתו.
 - א. מה הנך יודע על ϕ י הוכחי
 - ב. נסח והוכח את המשפט העיקרי המאפשר לך לענות על א'.
 - 3. נסת והוכת את משפט השלמות מבחינת לוחות האמת של תחשיב הפסוקים.
 - 4. כתוב בשפה המלאה של תחשיב היחסים את הטענות הבאות, כאשר הנך משתמש בכל פעם בפסוק בודד. א. השדה הוא בעל המצייו 0.
- ב. בגרף x ו-y הם צמתים שאין מסילה המחברת אותם, כלומאר לא קיימת סדרת צמתים שאין מסילה המחברת אותם, כלומאר לא x_1,\dots,x_n הם צמתים און מסילה המחברת אותם, כלומאר x_{i+1} באמצעות אותם, x_{i+1} באמצעות אותם, בין מחובר לצומת בלע של הגרף.
 - ג. אקסיומת החסם העליון של המספרים הממשיים.
 - $z \approx y$ שווה ל-y, ללא שימוש בסימן השוויון z = x

בהצלתה!

האוניברסיטה העברית בירושלים החוג למתימטיקה

בחינה בלוגיקה מתימטית (1) בחינה בלוגיקה מתימטית סמסטר הסתיו- תשנ"ה - מועד ג'

המורה: פרופ' עזריאל לוי

ענה על 3 שאלות בלבד מתוך 4 השאלות הבאות

תשובותיד על השאלות צריכות לכלול הוכחות מלאות וברורות.

- 1. א. הגדר את מושג הטאוטולוגיה בתחשיב היחסים.
- ב. הוכח שכל טאוטולוגיה של תחשיב היחסים היא אמיתית לוגית.
- ג. הוכח את המשפט העיקרי עלו אתה מסתמך בהוכחת ב' (משפט זה אינו עוסק רק בטאוטולוגיות).
 - ϕ בנוסחה אבור משתנה כשר להצבה עבור כשר עבו שם עצם 2. א. הגדר מתי
- $\phi(x)$ ב. הוכח שאם t כשר להצבה עבור x בנוסחה ϕ אז הנוסחה $\phi(x)$ אמיתית לוגית, היכן ש-
 - \mathbf{x} בי הופעות החופשיות ע"י הצבת t להופעות החופשיות של $\phi(\mathbf{x})$ בי היא הנוסחה המתקבלת

אין צורך להוכיח כאן את המשפט הכללי עליו אתה מסתמך, אלא רק לצטט אותו באופן מלא.

- ג. הבא דוגמאות של נוסחאות ϕ ו- ψ בהן t אינו כשר להצבה עבור x ב- ϕ וב- ψ , הנוסחה ψ אינה אמיתית לוגית. $\forall x \psi(x) \to \psi(t)$ אינה אמיתית לוגית.
 - \mathcal{A} אם מבנה ו-E יחס דו-מקומי על 3
 - ${\cal A}$ א. הגדר מתיE נקרא יחס חפיפה על
 - \mathcal{A}/E ב. עבור יחס חפיפה E על E הגדר את מבנה המנה
 - \mathcal{A} ג. צטט במלואו את המשפט הקושר את הערכים של נוסחאות של תחשיב היחסים מסדר ראשון ללא שיוויון ב- \mathcal{A}/E .
 - \perp ד. הוכח את צעד האינדוקציה בהוכחת המשפט של ג' למקרה של הנוסחה \perp ב.
 - 4. א. הגדר, עבור מערכת היסק לתחשיב הפסוקים, את המושגים של שלמות ושלמות במובן החלש.
- ב. הבא דוגמא למערכת היסק לתחשיב הפסוקים שהיא שלמה במובן החלש ואינה שלמה. הקפד להוכיח את השלמות במובן החלש ואת אי השלמות של המערכת.
 - ג. הבא דוגמא למערכת היסק שלמה. הקפד להוכיח את שלמותה.

בהצלתהי